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Abstract

This paper is concerned with the problem of obtaining the
minimum realization of a linear nonanticipative system charac-
terized by its impulse response matrix: the problem is to find a
linear differential system of least order which is zero-state equiv-
. alent tothe given one,

For the time-varying case, Kalman's decomposition is used

to obtain, in some cases, systems of lower order than Youla's

globally reduced systems. In special cases, integrators are

time-chared and integrators are saved at the cost of relays; from

a mathematical point of view, in such cases, the system's matri-

ces will include § functions.
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INTRODUCTION

This paper is concerned with the problem of obtaining the minimum
realization of a linear time-varying nonanticipative system characterized
by its impulse response matrix: the problem is to find the linear differ-
ential system of least order which is zero-state equivalent to the given
one. The key tool is the Kalmanl’ 2 decomposition of the impulse re-
sponse matrix. Our procedure results, in some cases, ina system of

lower order than Youla's globally reduced system. 3

A. Notations

Let W(t, T) be an r x p inpulse response matrix 6f a nonanticipative
system. Itis assumed that, for each fixed v, W is locally square inte- -
grable with respect to t and, for each fixed t, W is locally square inte-
grable with respect to T.

2,3

W(t, 1) is said to be realizable if there exists a linear differential

system S of finite dimensional state space (say n) which has a zero-state

response to any input u(.) applied from t, and given by

t
(1) o = | Wit ) uit) & B R
0

More precisely, let the system S be characterized by

(2) *(t)

E(t) x(t) + G(t) u(t),

(3) y(t) = H(t)x(®),




where F(-), G(:), and H(.) are, respectively, nxn, nxp and
r x n matrices whose elements are real-valued functions defined on
(-oq 0). Let @ (t, to) be the state transition matrix of (2). Then it is

well-known that W(t, ) is realizable by S if and only if
(4) W(t, v) = H(t) &(t, ) G(v) forall t > 7.

Since the system S is characterized by E', G, and H, one uses the
locution "(F, G, H) and realizes W(t, 7)."

| Under the condition that F, G, and H are locally square integrable,
Kalman has giveﬁ an interesting characterization of realiza.bi.lit:y:2

W(t, 7) is realizable if and only if
(3) Wt 7) = Y(t) B(7) Vt. T with t > 7,

where y(-) and B(-) are, respectively, r xn and n x p matrices
which are locally square integrable. We note that this characterization
is not valid if F(+) is not locally square integrable, The proof is based
on the observation that (0, B, y) realizes W(t, 7 ): thus, under these
conditions, it is always possible to simulate any such impulse response
ma trix using time variable gains and n integrators.

Under the condition that F(-) is locally square integrable and that
(5) holds for all t and T, Youla® has given an algorithm which, starting
from any given factorization of W(t, 7) as y(t) B(r), arrives at a factor-
ization of W of least order. Such a factorization is called a globally
reduced realization by Youla. In a nonanticipative system, however, we
would require that (5) hold only over the set t 2 T. We shall give~ a
procedure which obtains a realization of minimum order for this situation.

Let us call this problem A.




1f, furthermore, we drop the requirement that ¥(-) be lbcally
square integrable, it turns out that we can reduce even further the order
of S. We shall call this problem B.

Before we proceed to the reduction algorithms, it may be worth-

while to give an example illustrating the various '""minimal' realizations,

Examzle: let r=p=1and W(t, 1) = q;l(t) (31(1') + ¢2(t) 132(1') + ¢3(t) (33(1'),

where

Clif te[ -2,-1] lif te [ 3, 4] lifte [5,6]
e ={ 4,(t) ={ d3(t) ={

0 elSewhére, 0 elsewhere, 0 elsewhere,

1if te[-3,-4] 1if ve[1, 2) 1if te[7,8)
ByT) = By(T) ={ B3(T) ={

0 elsewhere, 0 elsewhere 0 elsewhere

we first note that the functions q;i( +) i=1,2,3 are linearly independent
over the interval (-, ©0). Similarly, the functions ﬁi( ) i=1,2,3 are
linearly independent over (-, ). Hence the globally reduced

realization of Youla™ has dimension 3. For the nonanticipative situation

however,

t
=f [4y(8) BL(T) + Uy(8) B(T)] u(r) at,
- 00

since ¢3(t) [33(7) = 0 forall t > v . Thus we have a realization of

dimension 2. Now consider the first order differential system,

A= -8t n+[1(-) By(t) + 1(t) B,(1)] wu(t),



y = 0 [gy(t) + ¥y ],

where 6(t) is the delta '"function," and 1l(t) is the Heaviside unit step
function. It can be verified that this system is zero-state equivalent
to the one characterized by W(t,7). Note that the matrix F(t) which is

here -§&{(t), is not locally square integrable,

B. Reduction Algorithm for Problem A

We start with a given factorization of W(t, v) as y(t) B(r), a product

of an r x n and an n x p matrix.

Definition 1. (a) For each t ¢ R, define n x n matrices

t
(6) B(t) =f Blr) B'(v) at,

- 00

and

[+ o}
(7) C(t) =f $r) () at.
t

(b) Let@(t) denote the range space éf B(t) and let %(t) denote
the null space of C(t).
Since the integration in (6) and (7) is taken over an infinite interval,
the matrices B(t) and C(t) may not be defined. However, we are only
interested in the subspaces@,(t) am‘i K2 (t) so that in (6), the lower limit

-0 can be replaced by any sufficiently small number t, < t such that the

0
number of linearly independent rows of B(+) over any interval (tb, t)
with tb < t is not greater than the number of linearly independez;t Trows

of B( ) over the interval (tg t). Similarly, the upper limit in (7) can



‘e

be replaced by any sufficiently large number t) >t so ;hat the number of
linearly independent columns of () over any interval (t, ti) with
ti > t is not greater than the number of linearly independent columns
of y{+) over the interval (t, tl).
The physical interpretation of the subspaces Q/(t) and 16 (t) is given

by the next definition and lemma,

Definition 2 Let t ¢ R be fixed,

(a) A vector x ¢ R® is said to be reachable at time t if there is a

square integrable function u(+) such that

t
_)E = V/‘\ E(T)B(T) dt.

=0

A vector x e Rn is said to be invisible after time t if

Y(r)x =0 foralmostallr > t.

(b) Let U(t) denote the set of vectors reachable at time t and let

V(t) denote the set of vectors invisible after time’ t.

‘Lemma 1: (a) U(t) = @(t) for each t. Also t, < t, implies that
R (1)) S Aty

(b) V(t) =n (t) for each t. Also t < t, implies that
75 (t) C Tht,).

The proof is very similar to the one given by Kalman and Wei559 and
is therefore omitted. Since &(tl) c Q(tz) < R for t1 < ts, @ ()
considered as a function of time changes only at finitely many instances.
A similar argument is valid for (1A («). Let t <ty e < t  to be the

values of time at which either @ (-) or ([ (+) changes. Then,



’@(tl) [%(tl)] for ~e0 <t <t
@(tz) [0 (tz)] for tl <t< t2

Qo [ =/

Aue )Wt )] fort  <t<t

\ Rt Niplt )] fort <t < e

where t
m

. - >
is any number with t el t

+1

We will now decompoée@ (ti) as follows:
Let
(8 Riep = Riepn Wity @ X ey,

,and for i > 0,
(9) R (g, = Rig) +Yir, ) @ L (),

where I’(tl) is any arbitrary subspace satisfying (8), andg'(ti_*_l) is
any subspace of 06 (ti+1) of largest possible dimension which satisfies
(9) for some X (t,,,). For symmetry, let us define fq(tl) =&.(tl)n

§1A (t;). Now let,

L-Lepo-oLw, .

and

fq Yooy ()

Then we observe that

(10) Qe p=Loly



and

1 * 1
am  B-Qe el -LoeYe R,

Remarks: In the above decomposition the subspaces % (ti) and M (ti)
are not uniquely defined. However, the dimension of each subspace is
unique. Therefore, if we let n be the dimension of %) , n is a well-

defined number. For an illustration of this decomposition see Fig. 1.

Definition: Let P be the matrix representing the projection of K® onto

% along?%@ @l(tmﬂ)'L. i.e., if z ¢ K and z = x +y with xe €0

and y e‘qf @@«(

t )
m+l’ , we must have

P(z) = P(x+y) = P(x)+P(y) = P(x) = x.

We again note that although P depends upon the particular decomposition
chosen, the dimension of the range of P is the well-defined number n,

| . The relationships between this decomposition and the factorization of

‘

W(-, ») is given by the next lemma,

Lemma 2 (a) Let 1 < i < m+l be fixed and let ti'_ <t<t be a fixed

1

number. The set of all vectors x ¢ K° such that there is a square inte-

grable function u(-) with

t
X = E(T)-I_I_(T) dt -
t-1
contains the setx(ti). (Here vto = =-00.) Also.@,(t)n m (ti+1) = {2}

for t < ti‘




-

(b) Let Xp %y e%(ti), and let ti-'l <t< ti be a fixed

°
number.

E(T)(_}El-iz) =0 for almost all T > t
implies 'that X = X5,
(c) Finally, for almost all(t, ) with t > T we have
$(t) Blr) = y(t) P ().

Proof: (a) Let x e%(ti) _C_:@, (ti) =@/(t). Therefor‘e there

is a function u( - ) such that
t
x =f B(r) u(r) dt
-w -

i1

: t
B(r) u(r) dt +f B(+) u(v) at

"% Y1

X + x5 say.
Obviously X € @(ti-l) so that by the decomposition (9) x = 0.

(b) By assumption Lp('l")(_}il’iz) = 0 for almost all v > ¢, so that
(_>51-_>52) € %(ti). By the decomposition (9), since’q(ti) < 0 (ti) has

maximum dimension we must have

W) N (1) = {0}.



This implies that X%, = 0.

(c) It suffices to prove that for all square integrable functions

u(-), we have

! | : t . ) t
| y(t) =f Y(7) B(7) u(r) dt = f y(t) PB(7) u(t) dt.

- 00 - 00

t
Let z(t) = f B(7) u(r) dt. Clearly x(t) e R(t) = R(t,) for some i.

-

By the decor;molgosition (9) we have
z=xty,

where x efB(tl) + e . +$(ti).

and yeYe)+ oo e +Y (1), '

By the definition of P,

We have to show then that Y(t) y= 0. But this is 1':rue because
Toct) 2Y () +- - - +Y (x). | Q.E.D.

Since PZ = P, by lemma 2 we have,

(1) B(T) = gy(t) By(v) forallt> 7

where

Yyt € () P and B,(r) L PB(7).

~1n _




Since the range of P has dimension n, there are at most n independent
rows in the matrix _B_l( . ) and at most n independent columns of .Slil( o).
We start with the factorization of W(t, t) as _q_;_l(t) El('r) and carry out
the Youla reduction technique. Let the globally-reduced realization

obtained by this method be
A A
Wi(t, v) = y(t) () for t > 1,

A A A A .
where § and B have dimension pxn and nx r, respectively.

Clearly n <n.
A -
Theorem l: (a) n=n.

~ ~
(b) Let W(t,t) = y(t) B(r), where t > T be an arbitrary
factorization of W as a product of p x fi and n x r matrices respectivély.

Then 1 > 7.

Proof: It suffices to prove (b). Let t < ty - < t be the switching
times in the definitions (8) and (9). Corresponding to the factorization

~

¢, B define the subspaces &(ti) ( (1:i ) e (ti) etc.. Note that

~

these are subspaces of R". Let

~

~ ~s .
:Ié=’x.(t1)+- -+ 0 (tm).A
. ~J - - A
Then DGQ Rn. To show that n _>_ n, we shall in fact show that

ﬁ'i 2 dimension ( t, )) = Ei 4 dimension: (‘Jl (t, )) from

&L
which it follows that n 2 EH =§'ﬁ. =7, Lett , <t<t beafixed
number. Then (a) and (b) of lemma 2 imply that the impulse response

Y(t) B(r) gives exactly n, linearly independent outputs over the interval

«lla’




(a4 ~
(t, ©0). Similarly, the impulse response g(t) B(r) gives 2xactly n,
linearly independent outputs over the interval (t, ®). Since these two

— ~
impulse responses are the same we must have n, = n, .

C. Reduction Algorithm for Problem B

As before, we start with a given factorization of W(t,7) as
Y(t) B(r), a product of an r x n matrix and an n x p matrix. We define
the subspaces@q (t) and YG(t) as in problem A, Again let
< .
<%

changes.

+ <t__ be the instants at which either R(-) or 6 ()

To keep the notation from getting prohibitively‘complicated we
shall illustrate the reduction algorithm for the case when m = 1. The

extension for m > 1 must be clear, Thus, suppose m =1, so that
R (1) = Re)) [MW(t) =T(t))] for t <t and R (1) = R (1)

[ 6 (t) =n(t2)] for t > t;, where t, > t; is any number. Let
® (t) = (‘R(ti)'ﬂm(ti) + %’(ti) i=1,2,

where’x (tl) and x(tz) are chosen in such a manner that they have an
possible dimension. This is achieved as follows.
(i) Choose an arbitrary basis B1 for (R (tl) N m(tl)'

(ii) Complete the basis to B, U B,, for & (1) N T (t,).

(iii) Complete the basis to B1 U B21 U Q1 for K (tl). Then

B, U Q, is the bas.is for :x;(tl)

19 .




(iv) From (ii) complete the basis to BlU B21 U B21 for
@ (£ )NWe,).

(v) Complete the basis to B21 N B1 N BZln Q1 U Q2 for & (tz). Then
QIU Q, will be the basis for x(t,).

(vi) Let N be a basis for ® (tz)l.

The decomposition of R™ is illustrated in Fig. 2.

Next we construct a nonsingular n x n matrix M and its inverse

M1 as follows:

_ - _ .-
\ 21 H

Tr
1 B2
Ql .
_ -1 2 3
M=|B, Q|Q,|B;|B,r N| M= — :
Hq

r
| Bot Hg
N e - N |J.6

l"'l P'Z l"'3 }"'4 P's l"'b - -

Thus the first ¥y columns of M are the vectors of B,y the next p,
columns of M are the vectors of Ql’ and so on. Similarly, the first *
h are denoted by BEI are the reciprocal basis vectors

of B21 ‘and so on. The last p, rows of M-1 are the vectors of N. Now

y(t) Br) = [y MIIM! pem) )

[$(0I[E()] say.

We can regard &(t) and E(T) as

-13 -



B My
g k
| i ~ Bs k3
Y(t) = Y1 9| Y _"1’4 Ys _‘Eb_ B(r) = By Hy
- d Bs K5
My H2 Pz By M5 Bg B ™
where for example _LE4(t) = Y(t) Bl‘and Eb('r) = NB(t). Since Blg

n (tl) we must have according to lemma la _414(1:) = 0 for almost all t .

1]

Again, as B, U B, U B, C %(tz) we will have y(t) = 0, y,(t) = 0

“nd gg(t) = 0 for t > t;. Now B U B, U Q, is a basic for@.(tl) so
that By(7) =0, By(t)=0, and Bi(r)=0.for < t. Similarly,

E6(-r) =0 for v > t,. Taking these facts into account we see that

$(t) B(r) = _(E(t) E(T) = |:$1 l ¥ Iﬂi3] B |

By P B3 B, 2

where furthermore 93(7) =0 for t < t:1 and yl(t) =0 _for t > tl'
If Hy > B3 we can add Hp- B identically zero rows to _@_3 and L)
identically zero columns to $3 to make My = p3. Similarly, if

B3 > #) we can add P Y identically zero rows and columns to

El and Yy» respectively. Thus we can assume that My = K3. Let n,
be a vector of dimension By = By and n, be a vector of dimension

Ky and consider the first order differential system of dimension

p.1+‘|.12 .

-14 -



n(t) = -8 (t-t)) ay+ [ BB L (g -t) + By(t) ] u(n)

n,(t) = B (1) u(t)

and y(t) = [4(t) + g5(t) 1 (t-t;)] m(t) + g (t) n,y(t), where §(t) is a
By X By diagonal matrix with §(t) as the diagonal elements and 1(t) is
a py X py matrix with the Heaviside unit function 1(t) on the diagonal,
It should be clear that the zero-state response of this system is the
same as that given by the impulse response matrix W(t,-r) An analog

computer setup for this ‘system is given in Fig. 3.
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